Vibrational spectra and normal-coordinate analysis of poly(3,3-dimethyloxetane)

Juan C. Merino, Jose M. Pastor and Jose A. de Saja

Fisica de la Materia Condensada, Facultad de Ciencias, Universidad de Valladolid, 47005 Valladolid, Spain

and Dines Christen

Institüt für Physikalische und Theoretische Chemie, Universität Tübingen, FRG (Received 20 November 1986; revised 23 June 1987; accepted 12 October 1987)

The infra-red and Raman spectra of the two stable polymorphic forms of poly(3,3-dimethyloxetane) are presented. Normal-coordinate treatments have been performed on molecular models of both crystalline modifications. The agreement between the observed and calculated frequencies was excellent, and the assignment of the normal modes was satisfactorily realized. The vibrational region most sensitive to the molecular configuration is also analysed.

(Keywords: Raman spectra; infra-red spectra; normal-coordinate analysis; polyethers; poly(3,3-dimethyloxetane); crystalline conformers)

INTRODUCTION

Polyoxetanes are a type of polyether with general structure ($-O-CH_2-CR_1R_2-CH_2-$). Substitution of R_1R_2 by alkyl groups introduces important modifications in their properties. At the moment only a few papers on the structure¹⁻⁴, thermal behaviour^{5,6} and crystal-linity⁷⁻¹⁰ of these branched polyoxetanes have been published.

The branched polyether series generally have a variety of conformational forms, which lead to various crystalline structures. In previous work⁴⁻¹⁰, a strong dependence of the crystalline form of these polyethers on external physical variables (temperature, stretch, pressure) has been observed, and consequently conformational characterization of the conformers was necessary.

Vibrational spectroscopy is a potentially useful tool for deriving information on conformational variations¹¹. This technique involves measurements of infra-red and Raman spectra and their analysis, most often incorporated with a normal-coordinate treatment. While linear polyethers have been the subject of numerous spectroscopic studies^{1,12-14}, these analyses and a satisfactory interpretation of the vibrational spectra of branched polyethers are still missing. The most obvious difficulty is the size of the problem, because the relatively large repeat unit results in a complicated spectrum.

The main purpose of this paper is to realize a vibrational characterization of two crystalline forms of poly(3,3-dimethyloxetane) (PDMO), corresponding to substitution of R_1 and R_2 by methyl groups. In a previous paper⁸, it has been shown that PDMO can exist in three different crystalline phases, but when isothermal crystallization is used, only modifications II and III were obtained. Modification I is a planar zig-zag conformation and is only present in combination with modification II maintaining the sample stretched². The preferred chain conformations in the main crystalline variations are

0032-3861/88/040661-12\$03.00 © 1988 Butterworth & Co. (Publishers) Ltd. $T_3GT_3\bar{G}$ with monoclinic structure (modification II) and $(T_2G_2)_2$ with orthorhombic structure (modification III).

For the two conformers of poly(3,3-dimethyloxetane) it may reasonably be expected that vibrational spectra will show noticeable differences. On this basis, we have succeeded in analysing^{4,7,10} the evolution of these crystalline forms with various parameters (crystallization temperature, annealing temperature, pressure, etc.) based on spectral differences.

The optimum assignment of observed frequencies, together with their changes as a function of conformational state, is based on a normal-coordinate analysis. In this way, the majority of the force constants used were transferred from the valence force field (VFF) basis of the Snyder¹⁵ and Brooks and Haas¹⁶ studies. The results obtained here will be used to analyse other branched polyethers in order to get more complete knowledge of the vibrational spectra, which will allow conformational characterization of the different crystal modifications appearing in these polymers. Bearing in mind the relatively small amount of information we possess about the force field available for this complex molecule, we propose this study as a first stage in the conformational characterization of these branched polyethers.

EXPERIMENTAL

The PDMO samples used in this study have been described previously⁴. The method essentially consists of crystallization of the polymer above 16°C (modification II) or below 0°C (modification III). Thus, the samples were prepared by moulding the polymer at temperatures higher than the melting point (75°C), followed by crystallization by rapid cooling at 20°C or -10° C. To avoid the presence of form II during crystallization of modification III, the molten sample was quenched to

POLYMER, 1988, Vol 29, April 661

 -50° C and thereafter crystallized at -10° C. All samples for infra-red analysis were prepared as films.

Raman spectra were obtained on a Jobin–Yvon Ramanor HG2S spectrometer. The 514.5 nm exciting line of an argon-ion laser was utilized as the source of illumination. The laser power was approximately 150 mW at the sample. A scan speed of $20 \text{ cm}^{-1} \text{ min}^{-1}$ was used and the monochromator slit width was fixed at $250 \,\mu\text{m}$. The spectrometer was interfaced via a Microlink (Biodata) to a Commodore microcomputer. The computer allows for multiple scans, thus improving the signal-to-noise ratio of the final spectrum. Infra-red spectra were recorded using a Nicolet FTIR 60SX with a resolution of 1 cm⁻¹ and 50 scans.

NORMAL-COORDINATE ANALYSIS

The crystal structures of two main crystalline modifications of PDMO have been determined by Takahashi *et al.*² from X-ray diffraction studies. In modification II, two chains in $T_3GT_3\overline{G}$ conformation pass through a monoclinic cell with parameters a=8.93 Å, b=7.48 Å, c (fibre axis)=8.35 Å, $\beta=97.9^{\circ}$ and space group P2₁/c (C_{2h}⁵). In modification III, two T_2G_2 chains pass through an orthorhombic cell with parameters a=15.6 Å, b=5.74 Å, c (fibre axis)=6.51 Å and space group C222₁ (D₂⁵).

The symmetry operations of the isolated molecular chain belong to the factor group isomorphous to the point group C_s for conformation II, and to D₂ for conformation III². The results of the factor group analysis show that the normal modes (excluding pure translations and rotation) can be classified into the following irreducible representations: modification II-46 A', 46 A"; modification III-23 A, 23 B₁, 23 B₂, 23 B₃. We have previously demonstrated¹⁰ that only modification II can be present after a strong stretching of the sample. Thus, only the polarized spectra of the crystallized samples with this crystalline conformation can be analysed.

To calculate the normal coordinates, the concept of isolated polymer chain was applied. No splitting into doublets due to the effect of interactions between two chains contained in the unit cell was observed. To try to observe the splitting, the spectra of the cooled samples were recorded, showing no important differences between the spectra at different temperatures, possibly due to a very weak interaction between the molecular chains as a consequence of the presence of branches.

Normal-coordinate calculations of linear polyethers have been performed by Tadokoro *et al.*¹⁷⁻²⁰ using a modified Urey–Bradley force field (MUBFF). However, this type of force field is shown to be inappropriate to the study of conformational disorder^{21,22}. Consequently, in our study we must use a valence force field type $(SGVFF)^{23-27}$.

The normal coordinates were calculated on a VAX– VSM computer, using an adaptation for polymers of a program described previously²⁸. The modification of the original program is based on the calculation method detailed by Hannon *et al.*²⁹. The necessary data for the calculation consist of Cartesian coordinates and atomic masses, internal coordinates, force constants and observed frequencies (necessary for a force-constant refinement). The Cartesian coordinates for an isolated chain in a preferred conformation of the two crystalline forms were calculated with a CART program³⁰, using the molecular parameters shown in *Table 1*. The results appear in *Tables 2* and 3. In *Figures 1* and 2 are illustrated the conformations of the two modifications and the description of the internal coordinates (105 for modifications II and III) for conformer III, with the exception of the torsional modes. The internal coordinates are identical for the two conformers. The resulting force field contains 41 types of force constants, and their definitions in terms of internal coordinates and values are listed in *Tables 4* and 5, using the usual nomenclature^{23-27,31}. In *Table 5* are presented only the

 Table 1
 Molecular parameters of poly(3,3-dimethyloxetane)

Parameter	Modification II	Modification III
Bond lengths (Å)	C-C: 1.54	C-C: 1.54
_	C-O: 1.43	C-O: 1.43
	C-H: 1.09	C-H: 1.09
Valence bond angles (deg)	C1C2C3: 107.2 C5O4O3: 107.2 C5O6C7: 107.2 Other angles: 109.47	All angles: 109.47
Internal rotation angles (deg)	C1C2C3O4: 179 C2C3O4C5: 179 C5C6C7O8: 179 Other angles: 180	All angles: 180

 Table 2 Cartesian coordinates of the atoms in modification II of poly(3,3-dimethyloxetane) (in Å)

Atom	x	У	Z
C1	1.192	0.007	- 2.174
C2	1.257	-0.513	- 0.726
C3	0	0	0
O4	0	- 0.477	1.348
C5	-1.192	0.007	1.974
C6	-1.257	-0.513	3.422
C7	0	0	4.148
O8	0	- 0.477	5.496
C9	2.515	0	0
C10	1.257	- 2.053	- 0.726
C11	-2.515	0	4.148
C12	-1.257	- 2.053	3.422
H13	1.192	1.096	- 2.168
H14	2.068	-0.333	- 2.723
H15	0	1.090	0
H16	-0.890	-0.363	- 0.514
H17	-1.192	1.096	1.980
H18	2.068	-0.333	1.425
H19	0	1.090	4.148
H20	0.890	- 0.363	3.634
H21	2.515	- 0.363	1.028
H22	3.405	-0.363	- 0.514
H23	2.515	1.090	0
H24	1.257	- 2.417	0.302
H25	0.367	- 2.417	-1.240
H26	2.147	-2.417	- 1.240
H27	-2.515	-0.363	5.176
H28	-2.515	1.090	4.148
H29	- 3.405	-0.363	3.634
H30	-1.257	- 2.417	4.450
H31	- 2.147	- 2.417	2.908
H32	-0.367	- 2.417	2.908
O33	0	-0.477	-2.800
C34	1.192	0.007	6.122
C35	0	0	- 4.148

Table 3 Cartesian coordinates of the atoms in modification III of poly(3,3-dimethyloxetane) (in Å)

Atom	x	У	Z	
C1	-1.257	1.778	1.257	
C2	-1.257	0.889	0	
C3	0	0	0	
O4	1.168	0.826	0	
C5	2.335	0	0	
C6	3.593	0.889	0	
C7	3.593	1.778	-1.257	
O8	3.593	0.953	- 2.425	
C9	-2.514	0	0	
C10	-1.257	1.778	-1.257	
C11	4.840	0	0	
C12	3.593	1.778	1.257	
H13	- 2.147	2.408	1.257	
H14	- 0.367	2.408	1.257	
H15	0	0.629	0.900	
H16	0	0.629	-0.890	
H17	2.335	- 0.629	0.890	
H18	2.335	- 0.629	- 0.890	
H19	2.703	2.408	-1.257	
H20	4.483	2.408	- 1.257	
H21	3.405	0.629	0	
H22	- 2.515	- 0.629	-0.890	
H23	- 2.525	- 0.629	0.890	
H24	- 0.367	2.408	-1.257	
H25	-1.257	1.149	- 2.147	
H26	- 2.147	2.408	-1.257	
H27	5.740	0.629	0	
H28	4.850	- 0.629	0.890	
H29	4.850	- 0.629	- 0.890	
H30	4.483	2.408	1.257	
H31	2.703	2.408	1.257	
H32	3.593	1.149	2.147	
O33	-1.257	0.953	2.425	
C34	-1.257	1.778	3.593	
C35	3,593	1.778	- 3.593	

Figure 1 Numbered chemical repeat unit of poly(3,3-dimethyloxetane) in conformation II

force constants for conformation III with different definition of internal coordinates in relation to form II. The asterisks appearing in *Table 4* indicate the force constants used in the refinement process, which seem the most specific of these molecules with respect to the quoted references.

RESULTS AND DISCUSSION

As previously described, only the sample with crystalline variation II can be totally stretched and therefore the polarized spectra of this conformer were registered. Raman spectra of a highly drawn semicrystalline sample of poly(3,3-dimethyloxetane) (form II) obtained according to the scattering geometry depicted in *Figure 3* are shown in *Figures 4a-d*. The notation for each Raman spectrum describes its scattering geometry³².

The geometry analysis of the $T_3GT_3\overline{G}$ conformation (form II) of PDMO is shown in *Table 6*, indicating that the bands with preferent polarization x(zz)y belong to the symmetry type A', while on the other spectra the bands corresponding to the two types of symmetry A' and A" appear together.

In Figure 5 is presented the Raman spectrum of the sample crystallized in form III. The Raman spectrum of PDMO in the amorphous state is also registered (Figure 6) and was obtained by heating the sample above the melting point, maintaining this temperature for 1 h with a later quenching process to -195° C, and finally recording the spectrum in a special cell³³. In Figures 7 and 8 the infra-red spectra of the two conformers are presented.

The observed and calculated wavenumbers and the approximate potential energy distribution for the two conformations of PDMO are listed in *Tables 7* and 8.

Figure 2 Internal coordinate definitions of poly(3,3-dimethyloxetane) in conformation III

 Table 4
 Force constants and internal coordinates involved for modification II of poly(3,3-dimethyloxetane)

Force-		Force-
constant		constant
symbol	Internal coordinate"	value
 Kn	1 4 ^c	4.51
	58	4.61
$K_{\rm X}$	9,,12	4.071*
<i>K</i> _r	13,,24	4.698
Kd	25,,32	4.545
H_{ω}	33, 34	0.95*
H_{ω_1}	35,,42	0.982*
H_{ω_2}	43, 44	1.097*
H_{θ}	45, 46	1.52/*
H_{χ}	4/,,50	1.204*
H_{α}	51,,62	0.555
п _б Н	67 78	0.55
Π _β Η	79 86	0.689*
H,	87 94	0.665*
$\tau(CC)$	95102	0.023
$\tau(CO)$	103105	0.033*
FR	1-2 1-5 1-6 2-5 2-6 5-6 3-4	
ĸ	3-7 3-8 4-7 4-8 7-8	0.083
F _{RX}	2-9 3-10 4-11 1-12	0.15*
FX	9–10 12–11'	0.288
F _{Rβ}	5-67 5-68 5-69 6-70 6-71 6-72 7-73	
	7-74 7-75 8-76 8-77 8-78 1-79 1-80	
-	2-81 2-82 3-83 3-84 4-85 4-86	0.174
$F_{\mathbf{R}\boldsymbol{\phi}'}$	2-87 2-88 3-89 3-90 4-91 4-92 1-93 1-94	- 0.097
FRo	1-33 2-33 3-34 4-34 1-33 1-30 2-37	
	2-38 5-33 5-37 0-30 0-38 5-39 5-40 A A1 A A2 7 30 7-A1 8-A0 8-A2 5-A3	
		0 303
Fn	2-47 3-48 4-49 1-50	0.434
F	9-45 10-45 11-46 12-46'	0.483
F _X ,	9-47 10-48 11-49 12-50	0.51*
F _x	9-87 9-88 10-89 10-90 11-91 11-92 12-93	
**	12–94	0.27*
$F_{X\gamma'}$	9-81 9-82 10-83 10-84 11-85 11-86 12-7	9
_	12-80	- 0.095*
<i>F</i> _r	13-14 13-15 14-15 16-17 16-18 17-18 19-	20
F	19-21 20-21 22-23 22-24 23-24	0.032
r _d F	67 68 67_60 68_60 70_71 70_72 71_72 73_	74
Γ _β	73-75 74-75 76-77 76-78 77-78	-0.035
F	79-80 81-82 83-84 85-86	-0.019
F	81-87 82-88 83-89 84-90 85-91 86-92 79-92	3
- γφ	80–94	0.02*
F	81-47 82-47 87-47 88-47 89-48 90-48 83-4	3
	84-48 85-49 86-49 91-49 92-49 93-50 94-5)
	79-50 80-50	- 0.022*
$f^{t}_{\beta\omega}$	79-36 80-33 81-38 82-37 67-35 68-37 69-4	3
	70-36 71-43 72-38 83-40 84-34 85-42 86-4	1
<i>C</i> 9	/3-39 /4-44 /5-41 /6-40 /7-42 /8-44	0.08
Ĵβω	8/-43 88-43 89-43 90-43 /9-33 /9-33 80-3. 90 26 91 22 91 27 82 23 82 26 67 27 67 //	2
	69 35 69 43 60 35 60 37 70 38 70 43 71 3	5
	71-38 72-36 72-43 83-34 83-39 84-39 84-49	5
	85-34 85-41 86-34 86-42 73-41 73-44 74-3	,
	74-41 75-39 75-44 76-42 76-44 77-40 77-4	4
	78-40 78-42 91-46 92-46 93-46' 94-46'	-0.064
F _ω	33-35 33-36 33-37 33-38 35-36 35-37 3	5-43
-	37-38 37-43 36-38 36-43 38-43 34-39 34-4	0
	34-41 34-42 39-40 39-41 39-44 40-42 40-4	4
	41-42 41-44 42-44	-0.041
fux	33-47 39-48 34-49 35-50	0.134
Ιώχ	5/-4/ 38-4/ 34-48 40-48 41-49 42-49 33-50	, 0.01
A	50-50 45_47 45_48 46_49 46'_50	-0.01
^γ χθ F.	87-88 89-90 91-97 93-94	-0.02
* ¢		0.04

 $F_{\mathbf{R}\boldsymbol{\beta}} = F_{\mathbf{R}\boldsymbol{\gamma}}; \ F_{\boldsymbol{\gamma}\boldsymbol{\chi}} = F_{\boldsymbol{\phi}\boldsymbol{\chi}}; \ f_{\boldsymbol{\beta}\boldsymbol{\omega}}^{\mathbf{t}} = f_{\boldsymbol{\gamma}\boldsymbol{\omega}}^{\mathbf{t}}; \ f_{\boldsymbol{\beta}\boldsymbol{\omega}}^{\mathbf{g}} = f_{\boldsymbol{\gamma}\boldsymbol{\omega}}^{\mathbf{g}} = f_{\boldsymbol{\gamma}\boldsymbol{\omega}}^{\mathbf{g}}$

"See Figures 1 and 2

^b Units of force constants are stretch (mdyn Å⁻¹), angle deformation and torsion (mdyn Å rad⁻¹) and angle stretch (mdyn Å) ^cA,..., B means from A to B **Table 5** Force constants and internal coordinates involved for modification III of poly(3,3-dimethyloxetane). The rest of the internal coordinates are the same as those in modification II

Force- constant symbol	Internal coordinate ^a	Force- constant value ^b
	70 22 90 25 91 29 92 22 93 24 94 40 95 4	1
J _{βω}	/9-55 80-55 81-58 82-55 85-54 84-40 85-4	0
	86-34 67-37 68-35 69-43 70-43 71-36 72-3	8
	73-39 74-41 75-44 76-40 77-44 78-42	0.08
f 🖁 🗤	79-35 79-36 80-33 80-36 81-33 81-37 82-3	7
	82-38 87-45 88-45 89-45 90-45 83-39 83-4	0
	84-34 84-39 85-34 85-42 86-41 86-42 77-3	5
	77-43 68-37 68-43 69-35 69-37 70-36 70-3	8
	71-38 71-43 72-36 72-43 73-41 73-44 74-3	9
	74-44 75-41 76-42 76-44 77-40 77-42 78-4	10
	78-44 91-46 92-46 94-46' 93-46' 75-39	-0.064
f ^t	37-47 39-48 42-49 36-50	0.134
Jωχ f8	33-47 38-47 34-48 40-48 34-49 41-49 33-5	50
Ϳωχ	35-50	0_1
٨t	JJ-JU AF A7 AF A9 A6 A0 A6 50	- 0.01
J _{Xθ}	43-4/ 43-48 40-49 40-30	-0.118

^aSee Figure 2

^bUnits of force constants as in Table 4

Figure 3 Raman scattering geometry for the drawn samples

 Table 6
 Symmetry analysis of the crystalline variation II of poly(3,3-dimethyloxetane)

		A' (Ag)	A" (B _g)
$ \begin{array}{c} x(zz)y \\ x(yz)y \\ x(zx)y \end{array} $	$\alpha_{zz}^{\prime 2} \\ \alpha_{xz}^{\prime 2} + \alpha_{yz}^{\prime 2} \\ \alpha_{xz}^{\prime 2} + \alpha_{zz}^{\prime 2}$	$\alpha_{zz}^{\prime 2} \\ \alpha_{yz}^{\prime 2} \\ \alpha_{yz}^{\prime 2} \\ \alpha_{zz}^{\prime 2}$	$\begin{array}{c} 0\\ \alpha_{xz}^{\prime 2}\\ \alpha_{xz}^{\prime 2} \end{array}$
x(yx)y	$\alpha_{xx}^{'2}, \alpha_{yy}^{'2}, \alpha_{xy}^{'2}$	$\alpha_{xx}^{\prime 2}, \alpha_{yy}^{\prime 2}$	α_{xy}^{2}

Zone 3000–2800 cm⁻¹

The wavenumbers corresponding to the C–H stretching vibrations for the two conformations are observed at 2967 and 2917 cm⁻¹ for the CH₃ group and 2870 and 2860 cm⁻¹ for the CH₂ group, showing no relation with the conformational state, similarly to other polymers that contain these branched groups²³⁻²⁷.

Zone 1500–1350 cm⁻¹

The observed frequencies between $1490 \text{ and } 1450 \text{ cm}^{-1}$ can be predominantly assigned to CH₂ and CH₃ bending. The vibrational motions of the conformers are characterized in this region by the difference of the Raman intensities between the bands situated at 1475 and 1485 cm⁻¹, while the other bands (1460 and 1452 cm⁻¹) appear to be independent of the two crystalline modifications and the molten state.

The corresponding symmetrical CH_3 bending vibration (umbrella), which causes a very characteristic band at about 1375 cm⁻¹ in polymers containing methyl

Figure 4 Polarized Raman spectra of PDMO in modification II

Figure 7 Polarized infra-red spectra of PDMO in conformation II

Figure 8 Infra-red spectrum of PDMO in conformation III

Table 7Observed and calculated frequencies and approximate potential energy distribution for modification II of poly(3,3-dimethyloxetane).Contributions less than 10% are ignored

Calc.	Obs. freq.			
freq. A'	I.r.	Raman	energy distribution	lype of vibration
2967			100% K _r)
2965		2049	$100\% K_{r}$	
2965		2908	$100\% K_{\rm r}$	
2963			$100\% K_{\rm r}$)
2919		2017	$100\% K_{\rm d}$	
2917		2917	100% K _d	
2877		2970	98% K _r	
2877		2070	98% K _r	V _s (CH ₃)
2859		2960	99% K _d	
2857		2000	99% K _d	$\int v_{s}(CH_{2})$
1480	1480	1470	48% H_{α} , 19% H_{δ} , 14% H_{β})
1474		14/8	55% H _a , $13%$ H _b , $14%$ H _b	
1468	1468	1468	69% H_{a} , 13% H_{b}	$\delta(CH_3), \delta(CH_2)$
1457			$30\% H_{a}, 52\% H_{b}$	
1456	1460		56% H^{α} , 30% H_{δ}	
1456			$64\% H_{a}, 23\% H_{b}$	J
1411	1420	1423	$29\% K_{R'}, 36\% H_a, 31\% H_{\beta}, -10\% F_{R\beta}$	
1401	1388		$17\% K_{\rm R'}, 44\% H_{a}, 46\% H_{b}$	$U(CH_3)$
1371	1370		23% H _a , $25%$ H _b , $21%$ H _y , $15%$ H _b)
1367	1260		$15\% K_{\rm R}, 23\% H_{a}, 19\% H_{b}, 19\% H_{s}$	$w(CH_2), U(CH_3), t(CH_2)$
1367	1500		23% H _a , $21%$ H _b , $20%$ H _a)
1292	1275	1275	$21\% K_{\rm R}, 26\% H_{\rm y}, 30\% H_{\phi}$	
1249	1239	1238	$43\% H_{y}, 45\% H_{\phi}$	
1187	1190	1193	$36\% H_{y}, 43\% H_{\phi}$	$W(C\Pi_2), W(C\Pi_3), t(C\Pi_2), t(C\Pi_3)$
1162	1110	1110	$15\% K_{R'}, 10\% H_{B}, 15\% H_{y}, 55\% H_{\phi}$)
1054	1060	1059	$71\% H_{B}$	$t(CH_3)$
1012			$17\% K_{\rm R}, 45\% H_{\rm g}$	$r(CH_2), r(CH_3), t(CH_2), t(CH_3)$
1004	1003	1003	$58\% K_X, 24\% H_B$	v _a (CO)
982	988	980	$17\% K_{\rm X}, 50\% H_{\beta}$	$t(CH_3), r(CH_3), v(CO)$
954	947	946	$45\% K_{\rm X}, 15\% H_{\phi}$	$t(CH_2), r(CH_2), \delta(COC)$
924	935	936	$11\% K_X, 11\% H_{\beta}, 34\% H_{\gamma}, 25\% H_{\phi}$	$\delta(\text{COC})$
904	910	912	$19\% K_{R'}, 31\% H_{\gamma}, 27\% H_{\phi}$	v _s (CO)
876			$22\% K_{\rm R}, 23\% H_{\chi}, 26\% H_{\gamma}, 18\% H_{\phi}$	$v(CO), r(CH_2)$
798		804	$17\% K_{\rm R}, 47\% K_{\rm R}, 19\% H_{\theta}$	Breathing in phase

Vibrational analysis of poly(3,3-dimethyloxetane): J. C. Merino et al.

Table 7 continued

Calc.	Obs. freq.				
A'	I.r.	Raman	energy distribution	lype of vibration	
632	630	630	$12\% K_{\rm R}, 11\% H_{\rm ev}, 44\% H_{\rm r}$)	
413	424	435	$16\% H_{m_1}, 44\% H_{m_2}, 15\% H_{\theta}, 12\% H_{\theta}$		
387	377	378	$70\% H_{m_1}^{-1}, 11\% H_{\theta}$		
341		350	$68\% H_{m}$, 14% H_{m}		
327	325		$65\% H_{m}$, 10% H_{e}		
228	236	237	17% Kp. 26% H 22% H 10% H	Skalatal mades	
133	200	139	25% H 15% H 26% H 21% τ (CC)	Skeletal modes	
112		110	$96^{\circ}/\tau(CC)$		
107		110	89% r(CC)		
20		00	16% H $41%$ H $14%$ t(CC) $12%$ t(CO)		
75		70	$10^{\prime}_{0} \Pi_{\omega_{1}}, 41^{\prime}_{0} \Pi_{\chi}, 14^{\prime}_{0} \Pi_{(CC)}, 12^{\prime}_{0} \Pi_{(CC)}$		
33		70	29% $\tau(CC)$, 58% $\tau(CO)$)	
Calc.	(Dbs. freq.			
freq. A"	I.r.	Raman	Assignment and potential energy distribution	Type of vibration	
2967			100% K	<u> </u>	
2965			100% K		
2905		2968	$100 \frac{1}{6} K_{I}$	$v_a(CH_3)$	
2905			$100 /_0 K_{\rm f}$		
2903			$100 /_0 \mathbf{K}_1$, ,	
2919		2917	$100 /_0 \mathbf{A}_d$	$v_{a}(CH_{2})$	
2917			100% Kd) = 2/	
26/1		2870	98% Kr	$v_{\rm e}(\rm CH_{3})$	
2877			98% Kr		
2859		2860	99% K _d	$v_{\rm e}(\rm CH_{2})$	
2857			99% K _d	(a(2)	
1484	1484	1484	$13\% K_{\rm R}, 41\% H_{\alpha}, 20\% H_{\delta}, 14\% H_{\beta}, 11\% H_{\gamma}$		
1473	1468	1468	$60\% H_a, 11\% H_{\delta}, 14\% H_{\beta}$		
1468	1100	1100	$68\% H_a, 12\% H_{\beta}$	$\delta(CH_3), \delta(CH_2)$	
1458	1460	1460	$21\% H_a$, $60\% H_b$, $11\% H_\gamma$	[
1456	1400	1400	$80\% H_{a}$		
1455			$46\% H_a, 39\% H_b$)	
1410	1420	1423	$29\% K_{R'}$, $36\% H_a$, $31\% H_{\beta}$, $-10\% F_{R\beta}$		
1401	1385		$17\% K_{R'}, 43\% H_a, 46\% H_{\beta}$	$\int O(CH_3)$	
1376	1370		$15\% K_{\rm R}, 22\% H_a, 18\% H_B, 15\% H_v, 22\% H_{\phi}$	1	
1354	1260		$20\% K_{\rm R}, 17\% H_{\rm a}, 13\% H_{\rm fl}, 17\% H_{\rm y}, 17\% H_{\rm b}$	$w(CH_2), U(CH_3), t(CH_2)$	
1350	1300		$26\% K_{\rm R}, 17\% H_{a}, 12\% H_{b}, 15\% H_{v}, 18\% H_{b}$)	
1286	1305	1306	$34\% H_{y}, 34\% H_{\phi}$		
1245	1239	1238	$15\% K_{\rm R}, 40\% H_{\rm y}, 46\% H_{\phi}$		
1203	1217	1215	$30\% H_{\rm m}, 50\% H_{\rm m}$	$W(CH_2), W(CH_3), t(CH_2), t(CH_3)$	
1143	1110		$14\% K_{\rm R'}, 13\% H_{\rm e}, 19\% H_{\rm u}, 47\% H_{\rm e}$)	
1053	1060	1059	73 % H.	$t(CH_3)$	
1023			12% Kp. 24% Ky. 37% H.	r(CH ₂), r(CH ₂), t(CH ₂), t(CH ₂)	
996	1003	1003	$46\% K_{\rm V}$, $26\% H_{\rm A}$	v _o (CO)	
982	988	980	21% Kp. $25%$ Ky. $39%$ H.	, a(CC)	
978	700	200	$13^{\circ}/K_{\rm R}$, $32^{\circ}/K_{\rm r}$, $49^{\circ}/H_{\rm r}$, $12^{\circ}/H_{\rm r}$	$w(CH_3), t(CH_3), v(CO)$	
023	035	036	13% K _R , $32%$ K _X , $45%$ $11%$ H $27%$ H $12%$ H	$r(CH) \approx (CO)$	
923	935	912	$15^{\circ}/K_{\rm p}$, $12^{\circ}/K_{\rm p}$, $46^{\circ}/K_{\rm r}$, $12^{\circ}/H$, $10^{\circ}/H$	$(C11_2), v_s(CO)$	
200	710)12	$15 /_0$ Kg, $14 /_0$ Kg, $40 /_0$ Kg, $12 /_0$ Hg, $10 /_0$ H _z , $17 %$		
870			$21^{\prime}/_{0}$ H_{β} , $11^{\prime}/_{0}$ X_{θ} $21^{\prime}/_{K}$, $23^{\prime}/_{H}$ $26^{\prime}/_{H}$ $18^{\prime}/_{H}$	$\int v_{s}(CO)$	
727		730	$\frac{21}{0}$ KR, $\frac{25}{0}$ M ₂ , $\frac{20}{0}$ M ₂ , $\frac{10}{0}$ M ₄	, Breathing out of phase	
574	575	581	11^{0} K, 17^{0} K, 15^{0} K, 12^{0} K, 11^{0} K, $11^{$	V	
174	402	105	$11 /_0 KR, 21 /_0 \Pi_{\omega_1}, 17 /_0 \Pi_{\theta}, 22 /_0 \Pi_{\chi}$)	
393	475	475	$2J_0 \Pi_{\omega_1}, 20/_0 \Pi_{\chi}$		
382	377	378	$21 /_0 H_{\omega}, 50 /_0 H_{\omega_2}, 10 /_0 H_{\beta}$		
350	226	550	$55 /_0 \Pi_{\omega_1}, 17 /_0 \Pi_{\theta}$		
321	323		$64 \frac{7}{6} H_{\omega_1}, 15 \frac{7}{6} H_{\theta}$		
211	252	225	$15 7_0 H_{\omega}, 44 7_0 H_{\omega_1}, 14 7_0 H_{\chi}$	Skeletal modes	
204	236	257	$04\frac{7}{6}H_{\omega_1}, 21\frac{7}{6}H_{\chi}$		
112		110	98% T(CC)	1	
111			99% τ(CC)		
84		90	$19\% H_{x}, 41\% \tau(CC), 22\% \tau(CO)$	1	
57		54	$12\% H_{\omega}, 23\% H_{\chi}, 19\% \tau$ (CC), $34\% \tau$ (CO)		
46		46	63 % τ(CC), 27 % τ(CO)	,	

groups, appears shifted in our compound to frequencies of 1388 and 1420 cm^{-1} possibly due to the interaction between the two methyl groups situated on the same bond (9–10 or 11–12 of *Figures 1* and 2). According to the results of normal-coordinate calculations, the lowerfrequency vibration corresponds to the in-phase motion

and the higher-frequency one to the out-of-phase movement. Finally, note that the position of these bands is not significantly affected by conformational changes.

Zone 1375-800 cm⁻¹

Assignment of the movements corresponding to the

 Table 8 Observed and calculated frequencies and approximate potential energy distribution for modification III of poly(3,3-dimethyloxetane).

 Contributions less than 10% are ignored

Calc. Obs. freq.			Assistant and associated		
freq. A	I.r.	Raman	Assignment and potential energy distribution	vibration	
2967			100% K.		
2965		2968	$100\% K_{r}$	$v_{a}(CH_{3})$	
2921		2917	$100\% K_{d}$	$v_{a}(CH_{2})$	
2876		2870	98% Kr	v _e (CH ₂)	
2858		2864	99% Kd	v _e (CH ₂)	
1480		1485	$10\% K_{\rm P}$, $50\% H_{\odot}$, $14\% H_{\odot}$	3(2)	
1479		1475	44% H. 20% H. 13% H. 11% H.	$\delta(CH_{2}), \delta(CH_{2})$	
1457		1460	48% H, $37% H$.	• (3), • (2)	
1401		1.00	$16\% K_{\rm P}$, $44\% H$, $47\% H$	$U(CH_{2})$	
1374		1360	$17\% K_{\rm p} 21\% H 16\% H 18\% H 18\% H.$	$w(CH_a) U(CH_a) t(CH_a)$	
1307		1300	$30^{\circ}/H$ $47^{\circ}/H$	w(eng), e (eng), t(eng)	
1160		1500	16° H 31° H 38° H	$w(CH_2), w(CH_3), t(CH_2), t(CH_3)$	
1057		1067	60° U	+(CU)	
1016		1007	$1/0 \mu^{3}$	$r(CH_3)$	
025		049	$14 /_0 K\chi$, $55 /_0 H_{\beta}$, $16 /_0 H_{\phi}$ 520 / V 120 / U 120 / U 170 / U 100 / E 10	$\gamma(CH_2), 0(COC), 0(COC)$	
933		940	$55 /_0 K_X, 12 /_0 H_{\beta}, 12 /_0 H_{\gamma}, 11 /_0 H_{\phi}, -10 /_0 F_{R\theta}, -10 /_0 F_{R\theta}, -10 /_0 F_{R\theta}$	$\gamma_0 \Gamma \chi_0 v_s(CU)$	
914		022	$24 /_0 \text{ KR}, 15 /_0 \Pi_{\theta}, 21 /_0 \Pi_{\gamma}, 10 /_0 \Pi_{\phi}$	$\mathcal{V}(\mathbb{CC}), \mathcal{V}(\mathbb{CH}_2), \mathcal{V}(\mathbb{CH}_3)$	
820 505		022	$12 /_0 \text{ KR}, 47 /_0 \text{ KR}'$	breathing in phase	
305		490	$14 \frac{7}{6} H_{\omega}, 35 \frac{7}{6}, H_{\omega_2}, 10 \frac{7}{6} H_{\beta}$		
325		330	$58 \frac{7}{6} \frac{H_{\omega_1}}{H_{\omega_1}}, 15 \frac{7}{6} \frac{H_{\omega_2}}{H_{\omega_2}}$		
318			35% H_{ω} , 34% H_{ω_1} , 13% H_{θ}	Skeletal modes	
235		268	12% K _R , 21% H _{ω_1} , 19% H _{ω_2} , 13% H _{θ}		
113			95% τ(CC)		
93		99	$\frac{12\%}{H_{\omega_1}}, \frac{18\%}{H_{\theta}}, \frac{41\%}{H_{\chi}}, \frac{13\%}{H_{\chi}}, \frac{15\%}{t(CC)}, \frac{15\%}{t(CC)}$) 	
Calc.	C	Obs. freq.	A seize and establish	Turne of	
B ₁	I.r.	Raman	Assignment and potential energy distribution	vibration	
2065		2068	100% K	······································	
2905		2908	$100 /_0 R_f$	$v_a(CH_3)$	
2903		2902	$100 /_0 R_r$, (СН.)	
2910		2917	$\frac{100}{0}$ Kd	$v_{a}(CH_{2})$	
2070		2870	$\frac{70}{0}$ $\frac{\Lambda_{\rm r}}{V}$	$v_{s}(CH_{3})$	
2830	1495	2004	$\frac{99}{6} \text{ Ad}$	$v_{s}(C\Pi_{2})$	
14//	1485	1475	57% H_a , 12% H_{δ} , 15% H_{β}		
1409	1453	1450	$59\% H_a$, $14\% H_{\delta}$, $12\% H_{\beta}$	$o(CH_3), o(CH_2)$	
1454	1453	1452	33% H_a . 49% , H_b , 11% H_γ		
1405	1420	1420	26% H _R , $38%$ H _a	$U(CH_3)$	
1361		1360	$15\% K_{\rm R}, 20\% H_{a}, 17\% H_{\beta}, 21\% H_{\gamma}$	$w(CH_a) = U(CH_a) = t(CH_a)$	
1354	1353		$14\% K_{\rm R}, 19\% H_{a}, 15\% H_{\beta}, 15\% H_{\gamma}, 11\% H_{\phi}$	···(
1231	1239		$20\% K_{\rm R}, 36\% H_{\gamma}, 48\% H_{\phi}$	$w(CH_{2}) w(CH_{2}) t(CH_{2}) t(CH_{2})$	
1174			$13\% K_{R'}, 11\% H_{\beta}, 17\% H_{\gamma}, 51\% H_{\phi}$	<i>w(enz)</i> , <i>w(enz)</i> , <i>t(enz)</i> , <i>t(enz)</i>	
1021	1017		$53\% K_X, 27\% H_{\beta}$	$v_{a}(CO)$	
978		972	$14\% K_{R'}, 59\% H_{\beta}$	$r(CH_2), v(CC)$	
923	948	914	$22\% K_{\rm X}, 21\% H_{\beta}, 22\% H_{\gamma}, 19\% H_{\phi}$	$v(CO), r(CH_2)$	
890			$32\% K_{\rm R}, 15\%, K_{\rm X}, 11\% H_{\rm g}, 21\% H_{\rm y}, 10\% H_{\rm g}$	$v(CC), t(CH_3), r(CH_2)$	
571	564		$11\% K_{R'}, 20\% H_{\omega_1}, 40\% H_{\chi}$		
366			$81\% H_{\omega_1}, 12\% H_{\beta}$		
213	194		$68\% H_{m.}^{31}, 40\% H_{r}$		
112	108		$98\% \tau(CC)$	Skeletal modes	
80			51 $\%$ τ (CC), 49 $\%$ τ (CO)		
23			41 $\%$ τ (CC), 56 $\%$ τ (CO)		
Calc.	C	Obs. freq.			
freq.			Assignment and potential	Type of	
B ₂	І.г.	Raman	energy distribution	vibration	
2967		2069	100% K _r	"(СН.)	
2965		2900	$100\% K_{\rm r}$	va(C113)	
2921		2917	$100\% K_{\rm d}$	$v_{a}(CH_{2})$	
2876		2870	$98\% K_{\rm r}$	$v_{s}(CH_{3})$	
2857		2864	99% K _d	$v_{s}(CH_{2})$	
1476	1473	1475	$50\% H_{\pi}, 18\% H_{\delta}, 13\% H_{\theta}$	S(CH) S(CH)	
1458		1460	$39\% H_{\pi}, 44\% H_{\delta}$	$o(CH_3), o(CH_2)$	
1456	1453	1452	80% H_{a} , 11% H_{A}		
1401	1388		16% K _{B'} , 44% H., 47% H.	$U(CH_3)$	
1364	1362	1360	$15\% K_{R'}$, $21\% H_{-}$, $17\% H_{-}$, $20\% H_{-}$	$w(CH_{a}), U(CH_{a}), t(CH_{a})$	
1260		1254	52% H ₄ , 55% H ₄		
1186	1186	1186	16% H_{e} , 23% H_{e} , 46% H_{e}	$w(CH_2), w(CH_3), t(CH_2), t(CH_3)$	
1053	1055	1056	$69\% H_{g}$	$t(CH_3)$	
1023		1017	$21\% K_{\rm X}, 27\%, H_{\star}, 19\% H_{\star}$	v ₂ (CO)	
984			60% Ky, $16%$ H.	$v(CO), \delta(COC), r(CH_{a})$	
905	909		24% K _P , 15% H _a , 21% H 16% H	$v(CC), t(CH_{2}), r(CH_{2})$	
743	764		48% Kp. 23% Kp. 19% H 11% Fp	Breathing out of nhase	
·			······································	2. cuting out of phase	

Vibrational analysis of poly(3,3-dimethyloxetane): J. C. Merino et al.

Table 8 continued

Calc.	Obs. freq.			
freq. B ₂	I.r.	Raman	Assignment and potential energy distribution	Type of vibration
576	575		$13\% K_{\rm R'}, 10\% H_{\omega}, 38\% H_{\chi}$)
358	354	348	$25\% H_{\omega_1}, 65\% H_{\omega_2}, 15\% \hat{H}_{\beta}$	
316	316		$31 \% H_{\omega}, 50 \% H_{\omega_1}, 10 \% H_{\gamma}$	Skeletal modes
162	153		$25\% H_{\omega}, 40\% H_{\omega_1}, 35\% H_{\chi}$	Skeletal modes
110	108	99	97% τ(CC)	
58		48	92% τ(CC)	J
Calc.	C	Obs. freq.		
freq.			Assignment and potential	Type of
B ₃	l.r.	Raman	energy distribution	
2965		2968	$100\% K_{\rm r}$	
2963		2962	$100\% K_{\rm r}$	
2918		2917	100% K _d	$v_{a}(CH_{2})$
2876		2870	98% K _r	$v_{s}(CH_{3})$
2856		2864	99% K _d	$\nu_{\rm s}(\rm CH_2)$
1469	1473	1475	$62\% H_{\alpha}, 12\% H_{\delta}, 12\% H_{\beta}$)
1458		1460	$43\% H_{a}, 41\% H_{\delta}$	$\delta(CH_3), \delta(CH_2)$
1456	1453	1452	$78\% H_a, 12\% H_b$)
1404	1420	1420	$25\% K_{R'}, 38\% H_{a}, 40\% H_{\beta}, -11\% R_{R\beta}$	$U(CH_3)$
1372	1362	1360	$17\% K_{\rm R}, 21\% H_a, 16\% H_{\beta}, 18\% H_{\gamma}, 18\% H_{\phi}$	$w(CH_{a}) U(CH_{a}) t(CH_{a})$
1353	1353		$15\% K_{\rm R}, 18\% H_a, 14\% H_{\beta}, 17\% H_{\gamma}, 12\% H_{\phi}$	
1287	1281		$13\% K_{\rm R}, 15\% K_{\rm R'}, 24\% H_{\gamma}, 30\% H_{\phi}$	w(CH.) w(CH.) t(CH.) t(CH.)
1157	1130		$12\% H_{\beta}, 25\% H_{\gamma}, 46\% H_{\phi}$	
996		1002	$23\% K_{\rm R}, 15\% K_{\rm X}, 43\% H_{\beta}$	$w(CH_2), r(CH_3), v(CO)$
982		972	$14\% K_{R'}, 59\% H_{\beta}$	$r(CH_2), \delta(COC)$
925	948		$54\% K_X, 14\% H_{\theta}, 15\% H_{\chi}, 14\% H_{\beta}, -15\% F_{R\theta}, -13$	$%F_{X_{\chi}}v_{s}(CO)$
885	873		$14\% K_{R'}, 36\% H_{y}, 35\% H_{\phi}$	$r(CH_2), \delta(COC)$
458	442	440	$43\% H_{\omega_1}, 35\% H_{\theta}, 11\% H_{\beta}, 10\% H_{\gamma}, -11\% f_{\beta\omega}$	
398	385		$14\% K_{\rm X}, 58\% H_{\omega_1}, 19\% H_{\theta}$	
230	261		$45\% H_{\omega_1}, 12\% H_{\theta}$	Skeletal modes
115	108		90% τ(CC)	
86		10	$23\% H_{\omega_1}, 20\% H_{\theta}, 50\% H_{\chi}$	
55		48	57% T(CC), 24% T(CO)	J

frequencies observed in this wavenumber region cannot easily be realized in this polymer. A description in terms of rocking, twisting and wagging modes of the CH₂ and CH₃ groups is only possible for a few frequencies, classified by the influence of the main movements. The majority of these modes agree with well established group frequencies. Thus, the high-frequency region is contributed to principally by CH₂ wagging with the presence of CH₃ symmetric bending and wag-like motions of the methyl groups. It is suggested from normal-coordinate analysis that the band at 1059 cm⁻¹ may be assigned to a CH₂ twisting and twist-like motions of the methyl groups.

The most important contribution in the low-frequency region involves a complex combination of C–C and C–O stretching and CH_2 rocking with some contribution from angular chain deformation around the oxygen bond.

The results obtained by other authors from normalcoordinate calculations on oligomers of the linear polyether type³⁴⁻³⁶ indicated the possibility of studying the conformational structure of linear polyethers through analysis of the vibrational wavenumbers in the 800– 1000 cm⁻¹ region, corresponding to C–O stretching and CH₂ rocking. The vibrational spectra in this region are very sensitive to the conformation of the bond following the C–O bond (related to the internal coordinate 3 in *Figure 2*). In our compound the conformational changes between the two crystalline modifications are situated on this bond. However, the vibrational spectra of PDMO in this region are more complex than those of linear polyethers. In this sense, the variations in intensity and wavenumbers observed between both conformers are too complicated to be used in the study of conformational characterization of PDMO.

Otherwise, the normal-coordinate treatment describes an isolated band at 798 cm^{-1} for variation II (A' mode) and 826 cm^{-1} for variation III (A mode) assigned to the movement described in Figure 9 (breathing mode). As we can see, the movement on the side groups makes an important contribution to this vibration, which characterizes branched polyethers. The Raman spectra present two very strong lines at 804 cm^{-1} (form II) and 822 cm^{-1} (form III) with a low contribution from the amorphous phase (band at 815 cm^{-1}). The polarization ratios of this band for variation II is the highest of the spectrum, therefore showing a strong intermolecular coupling. According to this, it can be concluded that these characteristic bands of PDMO are a good key to identifying the conformational variations, since they present the following characteristic: isolated and intense band from a pure and characteristic mode.

These last bands were used to study the evolution of the conformers present in the sample with change in external variables (annealing temperature, pressure, stretching, etc.). A deeper discussion about this characterization has already been presented^{4,7,10}.

Zone below 700 cm^{-1}

The normal modes occurring below $700 \,\mathrm{cm}^{-1}$ arise from the skeletal motions and, therefore, great differences

Figure 9 Normal mode corresponding to the frequencies of 804 cm⁻¹ (modification II) and 822 cm⁻¹ (modification III)

in the vibrational spectra of the two conformers were observed. However, a comparison of the spectra in the torsional modes region (about 110 cm^{-1}) reveals only minor differences between the results of the two crystalline conformations.

The vibrational assignment obtained for the crystalline modification III is very similar to the other modification. The most important influence of chain conformation III is reflected by the significant changes observed in the wagging and twisting zone, as well as in those previously discussed.

CONCLUSIONS

Normal-coordinate calculations have been performed on the molecular chain of two crystalline conformations of poly(3,3-dimethyloxetane). The agreement between the observed and calculated frequencies in both conformers are excellent and we have been able satisfactorily to assign the normal modes for both crystalline modifications with good confidence. The band corresponding to the breathing motion, characteristic of other branched polyethers, has been determined as the region most sensitive to the molecular conformation.

The refined VFF obtained for the two chain conformations of this polymer is presented as the first result for the polyether series with various branch lengths. We intend to expand this vibrational study to other elements transferring the force field, and finally an available conformational characterization of branched polyethers could be presented.

On the other hand, the results presented here are focused mainly on detecting the different conformations of the polymer. In this way analysis of the chain conformations by Raman spectroscopy has allowed us to follow the evolution of the crystal modifications after submitting the sample to thermal, stretching and pressure

processes. In previous papers^{4,5,10} we have shown changes in conformation of PDMO with the temperature of crystallization and annealing, time of crystallization and pressure on the basis of the vibrational assignment presented here.

Α similar vibrational study for poly(3,3diethyloxetane), to be published, has also allowed us to realize a conformational characterization and has been used to evaluate the behaviour of conformers of the compound.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge support by the Comisión Asesora de Investigación Científica y Técnica. DC thanks the Deutsche Forschungsgemeinschaft for financial support. We are indebted to J. G. Fatou and A. Bello for providing the samples and for their stimulating discussions.

REFERENCES

- Tadokoro, H., Takahashi, Y., Chatani, Y. and Kakida, H. 1 Makromol. Chem. 1967, 109, 96
- 2 Takahashi, Y., Osaki, Y. and Tadokoro, H. J. Polym. Sci., Polym. Phys. Edn. 1980, 18, 1863
- 3 Gómez, M. A., Atkins, E. D. T., Bello, A., Fatou, J. G. and Upstill, C. to be published
- Merino, J. C., Pastor, J. M., De Saja, J. A., Pérez, E., Bello, A. and Fatou, J. G. Eur. Polym. J. 1985, 21, 449 4
- Pérez, E., Fatou, J. G., Bello, A., Merino, J. C., Pastor, J. M. and 5 De Saja, J. A. Makromol. Chem. 1985, 186, 1731
- 6 Gómez, M. A., Fatou, J. G. and Bello, A. Eur. Polym. J. 1986, 22, 43
- Pastor, J. M., Merino, J. C., Jiménez, E. and De Saja, J. A. 14th 7 Europhysics Conf. on Macromolecular Physics, Villafranca del Penedés, Spain, 1982
- 8 Pérez, E., Gómez, M. A., Bello, A. and Fatou, J. G. Colloid Polym. Sci. 1983, 261, 187
- 9 Pastor, J. M., Merino, J. C., Gómez, M. A. and Bello, A. J. Mol. Struct. 1986, 143, 187
- 10 Merino, J. C., Pastor, J. M., De Saja, J. A. and Christen, D. J. Mol. Struct. 1986, 143, 183
- Painter, P. C., Coleman, C. C. and Koenig, J. L. 'The Theory of 11 Vibrational Spectroscopy and its Application to Polymeric Materials', Wiley, New York, 1982
- Tadokoro, H., Kobayashi, M., Kawaguchi, Y., Kobayashi, A. and Murahashi, S. J. Chem. Phys. 1963, 38, 703 12
- Yoshihara, T., Tadokoro, H. and Murahashi, S. J. Chem. Phys. 13 1964, 41, 2902 Imada, K., Tadokoro, H., Umehara, A. and Murahashi, S. J.
- 14 Chem. Phys. 1965, 42, 2807
- Snyder, R. G. J. Chem. Phys. 1967, 47, 1316 15
- 16 Brooks, W. V. F. and Haas, C. M. J. Phys. Chem. 1967, 71, 650 Tadokoro, H., Kobayashi, M., Kawaguchi, Y., Kobayashi, A. 17 and Murahashi, S. J. Chem. Phys. 1963, 38, 703
- 18 Yoshihara, T., Tadokoro, H. and Murahashi, S. J. Chem. Phys. 1964, 41, 2902
- 19 Makino, D., Kobayashi, M. and Tadokoro, H. J. Chem. Phys.
- 1969, **51**, 3901 Imada, K., Tadokoro, H., Umehara, A. and Murahashi, S. J. 20 Chem. Phys. 1965, 42, 2807
- 21 Gussoni, M. and Zerbi, G. Accad. Naz. Lincei, Rendiconti Ser. VIII 1966, XL, Fasc. 5, 6
- 22 Mills, I. M. Chem. Phys. Lett. 1969, 3, 267
- 23 Snyder, R. G. and Schachtschneider, J. H. Spectrochim. Acta 1964. 20. 853
- 24 Schachtschneider, J. H. and Snyder, R. G. Spectrochim. Acta 1965, 21, 1527
- 25 Cornell, S. W. and Koenig, J. L. J. Polym. Sci. (A-2) 1969, 7, 1965
- 26 Holland-Moritz, K. and Sausen, E. J. Polym. Sci., Polym. Phys. Edn. 1979, 17, 1
- 27 Holland-Moritz, K., Sausen, E., Djudovic, P., Coleman, M. M. and Painter, P. C. J. Polym. Sci., Polym. Phys. Edn. 1979, 17, 25
- 28 Christen, D. J. Mol. Struct. 1978, 48, 101

- 29 Hannon, M. J., Boerio, F. J. and Koenig, J. L. J. Chem. Phys. 1969, 50, 2829
- 30
- 31
- Pikket, H. M. PhD Thesis, Harvard University, 1973 Snyder, R. G. and Zerbi, G. Spectrochim. Acta 1967, 23A, 391 Damen, T. C., Porto, S. P. S. and Tell, B. Phys. Rev. 1966, 142, 32 570
- 33 Merino, J. C., Pastor, J. M. and De Saja, J. A. Polymer 1985, 26, 383
- 34 35 Matsuura, H. and Murata, H. Chem. Lett. 1978, 169
- Matsuura, H. and Murata, H. J. Raman Spectrosc. 1982, 12, 144 Matsuura, H., Fukuhara, K. and Tamaoki, H. J. Sci. Hiroshima 36 Univ., Ser. A 1985, 49, 89